The First Stable 1,2-Thiastannete and 1,2-Selenastannete: their Syntheses and Crystal Structures

Norihiro Tokitoh, Yasusuke Matsuhashi and Renji Okazaki*

Department of Chemistry, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Thermal decomposition of overcrowded 1,2,4,3-trichalcogenastannolanes 1 resulted in the formation of the first stable 1,2-chalcogenastannete derivatives $\mathbf{3}$ via [2+2] cycloaddition of intermediary stannanethione and stannanselone $\mathbf{2}$; the molecular structures of $\mathbf{3}$ were determined by X-ray crystallographic analysis.

Recently, a variety of strained rings and double-bond systems containing group 14 metals (Si, Ge and Sn) have been synthesized by kinetic stabilization using bulky substituents.¹

We previously succeeded in the synthesis of novel 1,2,3,4,5-tetrachalcogenametallolanes $R^1(Ar)MY_4\{R^1=2,4,6\text{-tris}[bis(trimethylsilyl)methyl]phenyl\}^2$ and 1,2,4,3-trichalcogenametallolanes $R^1(Ar)MY_3CPh_2$ 13 [M = Si, Ge, or Sn; Ar = mesityl or 2,4,6-triisopropylphenyl (R²); Y = S or Se], which are thought to be good precursors of group 14 metal-chalcogen double-bond compounds $R^1(Ar)M=Y$, by taking advantage of a new and effective steric protection group,

2,4,6-tris[bis(trimethylsilyl)methyl]phenyl⁴ (R¹). We present here the synthesis of the first 1,2-thia- and 1,2-selena-stannetes $\bf 3a$ and $\bf 3b$ via [2 + 2]cycloaddition of stannanethione $\bf 2a$ and stannaneselone $\bf 2b$ (Schemes 1 and 2).

When a toluene solution of **1a** was heated in the presence of an excess of dimethyl acetylenedicarboxylate (DMAD) (ca. 5 equiv.) at 120 °C for 6 h in a sealed tube, 1,2-thiastannete (**3a**, 48%) and 1,3,2-dithiastannole (**4a**, 12%) were obtained along with 1,2-dithiole (**5a**, 36%) and benzothiopyran (**6a**, 16%). Under similar reaction conditions **1b** gave the corresponding 1,2-selenastannete (**3b**, 15%), 1,3,2-diselenastannole (**4b**,

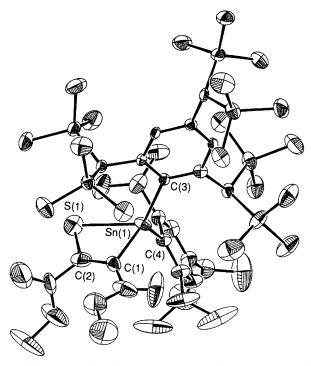
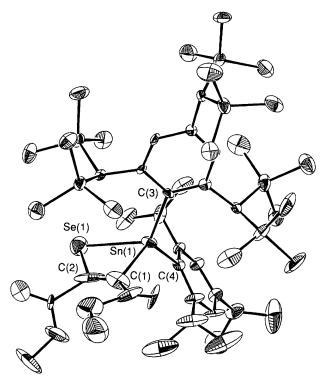



Fig. 1 ORTEP drawing of 1,2-thiastannete 3a with thermal ellipsoid plot (30% probability). Selected bond lengths (Å) and angles (°); Sn(1)–S(1) 2.651(4), Sn(1)–C(1) 2.17(1), S(1)–C(2) 1.73(1), C(1)–C(2) 1.33(1), Sn(1)–C(3) 2.166(7), Sn(1)–C(4) 2.164(7); S(1)–Sn(1)–C(1) 66.5(3), Sn(1)–S(1)–C(2) 73.1(4), S(1)–C(2)–C(1) 121(1), Sn(1)–C(1)–C(2) 98.6(8), C(3)–Sn(1)–C(4) 122.9(3), C(3)–Sn(1)–S(1) 119.1(2), C(3)–Sn(1)–C(1) 116.9(3), C(4)–Sn(1)–S(1) 99.5(2), C(4)–Sn(1)–C(1) 116.4(3).

11%) and 1,2,3,4,5-tetraselenastannolane (**7b**, 27%) together with benzoselenopyran (**6b**, 29%) (Scheme 1).

Although the mechanism for the formation of all the reaction products is not clear at present, the formation of **3a** and **3b** is most reasonably explained in terms of the [2 + 2] cycloaddition reactions of intermediary stannanethione $R^1(R^2)Sn = S$ **2a** and stannaneselone $R^1(R^2)Sn = S$ **2b** generated in the thermal retrocycloaddition of **1** (Scheme 2). Huisgen *et al.* reported a similar retrocycloaddition of **3**,3,5,5-tetraphenyl-1,2,4-trithiolane, a carbon analogue of **1**, into thiobenzophenone **8a** and thioxothiobenzophenone **9a**, which were trapped by DMAD to give **6a** and **5a**, respectively.⁵

The formation of 1,2-chalcogenastannetes **3a** and **3b** is noteworthy not only as the first synthesis of this type of tin-containing small ring systems but also as the first example of [2 + 2]cycloaddition reaction of tin-chalcogen double bonds except for self-dimerization. All the products here obtained showed satisfactory spectral and analytical data, and the final molecular structures of **3a** and **3b** were unequivocally determined by X-ray crystallographic analysis as shown in

Fig. 2 ORTEP drawing of 1,2-selenastannete **3b** with thermal ellipsoid plot (30% probability). Selected bond lengths (Å) and angles (°); Sn(1)-Se(1) 2.746(3), Sn(1)-C(1) 2.30(2), Se(1)-C(2) 2.00(2), C(1)-C(2) 1.33(3), Sn(1)-C(3) 2.17(1), Sn(1)-C(4) 2.19(1); Se(1)-Sn(1)-C(1) 74.3(7), Sn(1)-Se(1)-C(2) 64.3(7), Se(1)-C(2)-C(1) 134(2), Sn(1)-C(1)-C(2) 87(2), C(3)-Sn(1)-C(4) 121.3(5), C(3)-Sn(1)-Se(1) 120.2(4), C(3)-Sn(1)-C(1) 113.3(6), C(4)-Sn(1)-Se(1) 99.2(4), C(4)-Sn(1)-C(1) 118.4(6).

Fig.1 and 2.† Both **3a** and **3b** were found to have distorted trapezoid skeletons, which showed remarkably small corner angles at the tin atoms $[66.5(3)^{\circ}$ for S(1)-Sn(1)-C(2) of **3a** and $74.3(7)^{\circ}$ for Se(1)-Sn(1)-C(2) of **3b**] and at the sp² carbons α to the tin atom [98.6(8) and $87(2)^{\circ}$ for Sn(1)-C(2)-C(1) of **3a** and **3b** respectively], reflecting the coexistence of long tin-chalcogen bonds and short carbon-carbon double bonds [Sn(1)-S(1); 2.651(4) Å, C(1)-C(2); 1.33(1) Å for**3a**and <math>Sn(1)-Se(1); 2.746(3) Å, C(1)-C(2); 1.33(3) Å for**3b**]. Recently, Sita*et al.*^{1e} and Weidenbruch*et al.*^{1f} have described the X-ray structure analysis of two different types of sterically congested 1,2-distannetes, where the corner angles at sp² carbons were reportedly between <math>107.6(5) and $111.6(4)^{\circ}$.

† Crystallographic data: compound 3a, $C_{48}H_{88}O_4SSi_6Sn$, M=1048.48, triclinic, space group $P\overline{1}$, a=12.401(6), b=22.001(7), c=12.359(3) Å, $\alpha=95.91(2)$, $\beta=114.94(3)$, $\gamma=79.17(4)^\circ$, V=3002(2) ų, Z=2, $D_c=1.160$ g cm⁻³, $\mu=6.11$ cm⁻¹. The intensity data (20 < 55°) were collected on a Rigaku AFC5R diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71069$ Å) and the structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 6588 observed reflections [$I>4.00\sigma(I)$] and 541 variable parameters with $R(R_w)=0.073(0.082)$.

Compound **3b** $C_{48}H_{88}O_4SeSi_6Sn$, M=1095.38, triclinic, space group $P\overline{1}$, a=12.366(2), b=21.981(5), c=12.368(4) Å, $\alpha=100.76(2)$, $\beta=114.86(2)$, $\gamma=80.08(2)^\circ$, V=2996(1) Å³, Z=2, $D_c=1214$ g cm⁻³, $\mu=11.81$ cm⁻¹. The intensity data $(2\theta<55^\circ)$ were collected under similar conditions to **3a**, and the structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 3701 observed reflections [I>3.50o(I)] and 541 variable parameters with $R(R_w)=0.079(0.080)$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Furthermore, the four-membered rings of $\bf 3a$ and $\bf 3b$ were not planar, and the dihedral angles between the planes S(1)-C(1)-C(2) and S(1)-C(1)-Sn(1) of $\bf 3a$ and between the planes Se(1)-C(1)-C(2) and Se(1)-C(1)-Sn(1) of $\bf 3b$ are 7.3 and 10.7° respectively.

The successful isolation and noticeable stability of $\bf 3a$ and $\bf 3b$ suggest that the combination of the bulky R^1 and R^2 groups effectively protects these highly strained molecules against their ring-opening reactions by nucleophiles.

Received, 7th December 1992; Com. 2/06503G

References

(a) T. Tsumuraya, S. A. Batcheller and S. Masamune, *Angew. Chem., Int. Ed. Engl.*, 1991, 30, 902; (b) J. Barrau, J. Escudié and J. Satgé, *Chem. Rev.*, 1990, 90, 283; (c) R. P. Tan, G. R. Gillete,

- D. R. Powell and R. West, Organometallics, 1991, 10, 546; (d) A. Schäfer, M. Weidenbruch, W. Saak, S. Pohl and H. Marsmann, Angew. Chem., Int. Ed. Engl., 1991, 30, 834, 962; (e) L. R. Sita, I. Kinoshita and S. P. Lee, Organometallics, 1990, 9, 1644; (f) M. Weidenbruch, A. Schäfer, H. Kilian, S. Pohl, W. Saak and H. Marsmann, Chem. Ber., 1992, 125, 563; and references cited therein.
- 2 N. Tokitoh, H. Suzuki, T. Matsumoto, Y. Matsuhashi, R. Okazaki and M. Goto, J. Am. Chem. Soc., 1991, 113, 7047; N. Tokitoh, Y. Matsuhashi and R. Okazaki, Tetrahedron Lett., 1991, 32, 6151; N. Tokitoh, T. Matsumoto and R. Okazaki, Tetrahedron Lett., 1992, 33, 2531.
- 3 N. Tokitoh, T. Matsumoto and R. Okazaki, *Tetrahedron Lett.*, 1991, 32, 614; N. Tokitoh, Y. Matsuhashi and R. Okazaki, *Tetrahedron Lett.*, 1992, 33, 5551.
- 4 R. Okazaki, M. Unno and N. Inamoto, Chem. Lett., 1987, 2293; 1989, 791
- 5 R. Huisgen and J. Rapp, J. Am. Chem. Soc., 1987, 109, 902; R. Huisgen, Phosphorus, Sulfur, and Silicon, 1989, 43, 63.